

 Writing JavaScript

 	About

 How to extract pdf data with PDF.js

 2021-02-24

We live in a data-driven world, consistently transferring data from one location to another. In this brief tutorial, I will show you how to extract pdf content using PDF.js. This npm package will help you roll out custom pdf extraction logic or an interface to explore pdf data.

This article is a guest post by Ammon Victor.

This article glosses over the following ES6 concepts const, promises, async/await, and fat arrow functions

run
npm install pdfjs-dist
or
yarn add pdfjs-dist

Core

/**
 * Note the import of pdfjs/es5/build/pdf, required when in Node.js
 * else when using the default import in Node.js, getDocument will throw an error
 */
const pdfjs = require("pdfjs/es5/build/pdf")

async function getContent(src) {
 const doc = await pdfjs.getDocument(src).promise // note the use of the property promise
 const page = await doc.getPage(1)
 return await page.getTextContent()
}

PDF.js exposes getDocument that abstracts the logic for handling the opening of a pdf. If the file successfully opens getDocument has a property named promise that returns a promise with the document. With this returned document we can access any page with doc.getPage and then access the contents of that page with page.getTextContext, which returns an object with two properties items and styles, the data we need is in items.

Processing

content.items is an array of objects, what we are looking for is the str property of each object.

async function getItems(src) {
 // Perform checks
 const content = await getContent(src)
 /**
 * Expect content.items to have the following structure
 * [{
 * str: '1',
 * dir: 'ltr',
 * width: 4.7715440000000005,
 * height: 9.106,
 * transform: [9.106, 0, 0, 9.106, 53.396, 663.101],
 * fontName: 'g_d0_f2'
 * }, ...]
 */

 // you can do the following on content.items
 return content.items.map((item) => item.str)
 // This is a new array of strings from the str property
 // Expected output: ['1', '06/02/2013', '$1,500.00', 'job 1, check 1', 'yes', 'deposit',...]
}

This new array of strings will repeat n-times the number of columns in the pdf table. The repetition will depend on how the pdf was structured, perform pre-inspection of your pdf

With our data in the new array, we can loop through it n-times saving to JSON, saving to a database, or saving to a different file format.

Usage

	Standalone CLI app
	Integration into an existing server app
	As part of a web app UI/UX

view this GitHub repo extract-pdf-content for demos

More in-depth reading

	PDF.js documentation - PDF.js is a Portable Document Format (PDF) viewer that is built with HTML5. PDF.js is community-driven and supported by Mozilla.

 Article tags

 	#JavaScript
	#Node.js
	#pdf
	#tutorial
	#guest post

 Ammon Victor

 Building with JavaScript in the wild

 Reach the author at @ammonvictor

 More reads

 How to format numbers

 2021-02-28

 The native Intl.NumberFormat API lets you format numbers for specific languages without any external dependencies. …read more

 Format "5 days ago" localized relative date strings in a few lines with native JavaScript

 2021-02-27

 The native Intl.RelativeTimeFormat API can generate nicely formatted relative date/time strings without any external dependencies. …read more

 Lets code a plain JavaScript notification queue using private fields and methods

 2020-09-18

 Defining easy-to-use APIs can be tricky, a good starting point is to keep a small exposed surface. Now as private fields are becoming available, let try them out. …read more

 How to use lookahead and lookbehind RegExp in JavaScript

 2020-09-15

 Sometimes you want to ensure that a RegExp pattern starts immediately after a specific string but you don't want to include those characters in the match. In these cases, a lookbehind expression comes in handy. …read more

